
TThere has been a surge of interest in
grid computing, a way to enlist large

numbers of machines to work on multipart
computational problems such as circuit
analysis or mechanical design. There are
excellent reasons for this attention among
scientists, engineers, and business execu-
tives. Grid computing enables the use and
pooling of computer and data resources to
solve complex mathematical problems.
The technique is the latest develop-
ment in an evolution that earlier
brought forth such advances as
distributed computing, the
Worldwide Web, and collabo-
rative computing.

Grid computing harnesses a
diverse array of machines and
other resources to rapidly process and solve
problems beyond an organization’s avail-
able capacity. Academic and government
researchers have used it for several years to
solve large-scale problems, and the private
sector is increasingly adopting the technolo-
gy to create innovative products and ser-
vices, reduce time to market, and enhance
business processes.

The term grid, however, may mean differ-

ent things to different people. To some
users, a grid is any network of machines,
including personal or desktop computers
within an organization. To others, grids are

networks that include comput-
er clusters, clusters

of clusters,

or special data sources. Both of these defin-
itions reflect a desire to take advantage of
vastly powerful but inexpensive networked
resources. In our work, we focus on the use
of grids to perform computations as opposed
to accessing data, another important area
known as data grid research.

Different systems
Grid computing is akin to established

technologies such as computer clusters and
peer-to-peer computing in some ways and
unlike them in others. Peer-to-peer comput-
ing, for example, allows the sharing of files, as
do grids, but grids enable users to share other
resources as well. Computer clusters and dis-
tributed computing require a close proximity
and operating homogeneity; grids allow com-

putation over wide geographic areas using
computers that are heterogeneous.

Current grid uses such as SETI@home—
which taps personal computers on an as-
available basis to analyze data obtained in a
search for evidence of intelligent life else-
where in the universe—allow the spreading

of a complex calculation over hundreds,
thousands, or even millions of machines

using a local area network (LAN)
or the Internet (Table 2).
Although the computational

problems solved today by grid
computing are often highly

sophisticated, the software avail-
able to manage these problems cannot

handle connected parallel applications.
As it turns out, creating a parallel applica-

tion to run on a grid is even more difficult
than creating a large monolithic custom

application for a dedicated supercomputer or
computer cluster.

Grids are usually heterogeneous net-
works. Grid nodes, generally individual
computers, consist of different hardware
and use a variety of operating systems, and
the networks connecting them var y in
bandwidth. Realizing the vision of ubiqui-
tous parallel computing on a grid will
require that we make grids easy to use, and
this need applies both to the creation of
new applications and to the distribution
and management of applications on the
grid itself. To accomplish this goal, we need
to establish standards and protocols such
as open grid services architecture—which
allows communication across a network of
heterogeneous machines—and tool kits
such as Globus, which implement the rules
of the grid architecture (Table 1).

We will also require specialized middle-
ware (the software glue that connects an
application to the “plumbing” needed to
make it run) that effectively hides the com-
plexity of creating and deploying parallel
grid applications. Such user-friendly mid-
dleware for connected parallel processing
does not yet exist, but its development
should automate the process and make it
possible for people to run connected paral-
lel problems without detailed knowledge of
the grid infrastructure.

FORUM by James H. Kaufman, Glenn Deen, Toby J. Lehman, and John Thomas

Grid Computing Made Simple

Figure 1. A set of methods describes the
connectivity of the original problem cell
(OPC) with its neighbors and specifies the
calculations to be performed by the cell
using local data. Groups of OPCs form col-
lections, one or more of which define the
variable problem partition assigned to a
computer node.

31 The Industrial Physicist AUGUST/SEPTEMBER 2003
© American Institute of Physics

Figure 2. OptimalGrid has been used to
model the propagation of infrared light
through a photonic-bandgap structure of
silicon pillars (represented by circles), a
calculation that requires interactions
between electrical and magnetic fields of
nearest-neighbor grid cells and which
grows rapidly in memory demands and
run-time. The peaks show the value of the
magnetic field, which is related to the
intensity of light.

One edge
collection

Va
ria

bl
e

pr
ob

le
m

 p
ar

tit
io

n

OPC with
four

neighbors

Original
problem

cell (OPC)

G
eo

ffr
ey

 W
. B

ur
r,

IB
M

A
lm

ad
en

 R
es

ea
rc

h
C

en
te

r

Grid computing is becoming a critical
component of science, business, and indus-
try. Making grids easy to use could lead to
advances in fields ranging from industrial
design to systems biology to financial man-
agement. Grids could allow the analysis of
huge investment portfolios in minutes
instead of hours, significantly accelerate
drug development, and reduce design times
and defects. With computing cycles plen-
tiful and inexpensive, practical grid com-
puting would open the door to new mod-
els for compute utilities, a service similar
to an electric utility in which a user buys
computing time on-demand from a
provider.

Some industrial applications are impor-
tant enough to warrant the use of dedi-
cated high-end computers (supercomput-
ers or clusters of computers and/or
supercomputers). A much larger body of
scientific and engineering applications
stands to benefit from grid computing,
including weather forecasting, financial and
mechanical modeling, immunology, circuit
simulation, aircraft design, fluid mechan-
ics, and almost any problem that is mathe-
matically equivalent to a flow.

Complexity
The simplest class of applications

addressed with a computational grid has
been independently parallel problems (some-
times called embarrassingly parallel because
they are relatively straightforward to solve
with a grid). These applications work in a
simple scatter–gather model; that is, a
problem is divided into pieces of data, and
a separate data set is sent via the Internet to
different nodes, each of which works inde-
pendently and without communicating
with the other nodes to derive its results.
SETI@home and Folding@home (which
uses thousands of computers in an effort to
understand how proteins fold precisely into
the structures that enable them to carry out
their biological functions) are good exam-
ples of independently parallel applications.

Such problems are well suited for the
distributed computing power of a grid, and
they are straightforward to create. However,
they do not require or use autonomic fea-

tures—which are automatic and provide
feedback—to actively manage and maxi-
mize the effective use of available grid
resources. Issues such as failed nodes or
missing data sets are dealt with by re-run-
ning the calculation. This simple architec-
ture is possible because failure at one node
does not affect the calculations made by
other nodes.

A larger and more general class of appli-
cations can be described as connected paral-
lel problems, which require more sophisti-
cated management in almost every area,
including problem definition, problem par-
titioning, code deployment, grid–node
management, and system coordination.
These applications include finite element
model (FEM) techniques, commonly
encountered in industry and the commer-
cial world because they often are used to
study problems related to physical objects
or process flow, and cellular automata
problems, which include areas such as frac-
tals and pattern formation.

FEM problems are solved using a set of
well-understood techniques, which have
been applied in areas such as physics,
financial systems, life sciences, and com-
plex simulations. In a typical FEM applica-
tion, such as determining the stress on an
airplane wing, the object is divided into
finite elements and the appropriate equa-
tions are solved for each element. However,
the solution to the problem depends not
just on the answer in each element but on
data from all adjacent regions. Thus, rapid-
ly solving such a problem requires that
each cell be connected to the other cells
and that the cells communicate with one
another. In cases such as this, it has been
difficult to create large-scale, connected

parallel applications because of the special
expertise and access to expensive resources
needed to do so.

OptimalGrid
Most people working on grid computing

today focus on the challenges of its physical
operations, such as how to determine what
computer and database resources are avail-
able and how to organize them into a func-
tioning system. Our group, instead, is
attempting to create a means of easy,
seamless grid access and operation for
anyone who needs to solve a connected
parallel problem, no matter what grid the
person uses—be it an in-house supercom-
puter or a group of 10,000 personal com-
puters situated around the world.

To demonstrate how one might simplify
the creation of applications on a grid, we

have developed a prototype called Optimal-
Grid, which handles both independently
parallel and connected parallel problems
(Figure 2). OptimalGrid is available for
download for evaluation at www.alpha
works.ibm.com/tech/optimalgrid. This
self-contained middleware uses a much dif-
ferent approach than existing grid tool kits
and serves as a model for the next genera-
tion of grid operations. It provides a coordi-
nating interface between the software that
manages the grid nodes and the application
software, and it incorporates a new pro-
gramming model that provides autonomic
functions to hide the complexity of creating
and running parallel applications. Optimal-
Grid requires only that the networked com-
puters all have a Java run-time installed.

Not even an expert administrator could
orchestrate the complex connected prob-
lems of a heterogeneous distributed-com-
puter system. To this end, the OptimalGrid
system incorporates instrumentation, feed-
back, and a certain amount of knowledge,
or rules, to maintain a balanced perfor-
mance on the grid and react to various
kinds of failures. Its users do not have to
struggle with challenges such as partition-
ing the problem, finding available grid
nodes, delivering pieces of code to them, or
reapportioning the pieces of the problem
among the nodes to balance the workload.

32 The Industrial Physicist

TABLE I. GRID STANDARDS AND TOOLKITS

The Globus Project http://www.globus.org/
The Grid Forum http://www.gridforum.org/
Open Grid Services http://www.globus.org/ogsa/
Architecture

The Condor Project http://www.cs.wisc.edu/condor/

EMERGING GRID APPLICATIONS

SETI Project http://setiathome.berkeley.edu
Protein Folding http://folding.stanford.edu

Forum

Users simply have to supply the code that
represents their basic problem algorithm,
and OptimalGrid manages everything else.

Each node on the grid receives a piece of
the problem, which consists of a collection
of original problem cells (OPCs) (Figure 1).
An OPC is the smallest piece into which
the problem is divided, and each one needs
to communicate and share data with its
neighbors. OptimalGrid automates this
communication and attempts to minimize
the amount of network communication
needed to solve a problem. When the pro-
gram for the application is loaded, the mid-
dleware automatically partitions the prob-
lem using the following procedures:
1. Determine the complexity.
2. Identify the number of nodes available.
3. Use algorithms to predict the optimal

number of grid nodes needed to solve
the problem.

4. Optionally interact with the user to
divide the problem into an optimal num-
ber of pieces. Whether the user or Opti-
malGrid partitions the problem, the
middleware predicts the computation
time for the problem.

5. Partition the application data into OPCs.
6. Allow the user the option to customize

the data. In assessing stress on an air-
plane wing, for example, the user might
decide to remove one or two rivets from
a particular place.

7. Launch the program.

Autonomic features
Autonomic computing is a prerequisite to

creating grids that solve connected parallel
problems, because as the number of applica-
tions and the volume of data on a grid
increase, the need to coordinate and set pri-
orities grows exponentially. Thus, systems
that self-manage a grid and diagnose and
resolve problems are vital to its successful
operation. OptimalGrid attempts to imple-
ment three autonomic features: self-configu-
ration, self-optimization, and self-healing.

When the OptimalGrid system initializes
itself to solve a problem, it automatically
retrieves from the grid a list of available com-
puter nodes. It also obtains the grid’s perfor-
mance characteristics. At run-time, Optimal-

Grid measures ongoing performance, includ-
ing communication time, computation time,
and the complexity of the problem pieces.
OptimalGrid uses this information to config-
ure the grid by calculating the optimal num-
ber of computer nodes, partitioning the
problem, and distributing its pieces in a way
that obtains the best possible performance
on whatever grid is used.

The middleware monitors the run-time
performance of each node with respect to
the particular piece of the problem that it is
handling, which helps it continue to opti-
mize the computation and the network.
These measurements enable the system’s
autonomic program manager, which serves
as the application coordinator, to reassign
problem pieces among grid nodes and
make other needed adjustments.

OptimalGrid allows the system to self-
heal if one or more computer nodes fail dur-
ing a computational sequence. The loss of a
grid node during a sequence does not mean
the complete loss of the calculation per-
formed thus far by the node, but only some
of the results obtained by the failed node.
When OptimalGrid detects the failure of a
computer node, it stops calculations across
the grid until the failed node recalculates the
results lost during the sequence. Although
the grid must remain idle during this catch-
up phase, a short delay is preferable to hav-
ing to restart the problem solution from the
beginning. Once the node finishes its recal-
culation, the grid continues working on the
overall problem.

The OptimalGrid system is designed to
bring the immense potential of grid com-
puting within easy reach of users who
are not grid-infrastructure experts. By

including autonomic
features such as self-
configuration, self-
optimization, and
self-healing, Opti-
malGrid seeks to
deliver a robust sys-
tem capable of han-
dling truly connected
problems to meet a
broad class of user
needs for a broad

range of industrial and scientific applica-
tions. OptimalGrid is a new programming
model designed for the grid environment.
It is optimal in the sense that the system
attempts to optimize and balance the
pieces of the workload to make the best use
of any existing grid infrastructure. Initial
results look promising.

Further reading
Gelemter, D.; Bernstein, A. J. Distributed

Communication via Global Buffer. In Proc.
of the ACM Principles of Distributed Comput-
ing Conference; Association for Computing
Machinery: New York, 1982; pp. 10–18.

Gelemter, D. Generative Communica-
tion in Linda. TOPLAS 1985, 7 (1), 80–112.

OptimalGrid; www.alphaworks.ibm.
com/tech/optimalgrid.

Shread, P. Even Small Companies Can
Benefit from Grid Computing; available at
http://www.gridcomputingplanet.com/fea-
tures/article/0,,3291_946331,00.html.

James H. Kaufman (kaufman@almaden.
ibm.com), Glenn Deen@alma den.ibm.
com), Toby J. Lehman (toby@almaden.
ibm.com), and John Thomas (jthomas@
cruzio.com) are researchers on the Opti-
malGrid Project at the IBM Almaden
Research Center in San Jose, California.
Kaufman is a member and former chair of
the American Physical Society’s Forum on
Industrial and Applied Physics (FIAP). For
more information about the Forum, please
visit the FIAP Web site (http://www.aps.org/
FIAP/index.html), or contact the chair,
Kenneth C. Hass (khass1@ ford.com).

B I O G R A P H Y

33 The Industrial Physicist

TOTAL LAST 24 h

Users 4,570,474 1,226

Results received 944,671,502 1,168,568

Total CPU time 1,525,673.220 y 1,226.757 y

Floating point
operations 3.268404 × 10 25 4.557415 × 1018

(52.75 teraflops/s)

Average CPU time
per work unit 14 h, 08 min, 51.5 s 9 h, 11 min, 46.3 s

SETI@home is a scientific experiment that uses Internet-connect-
ed computers in the search for extraterrestrial intelligence. You
can participate by running a free program that downloads and
analyzes radio telescope data. A table on the Web site summa-
rizes results.

TABLE 2. SEARCHING FOR EXTRATERRESTRIALS ON THE GRID

